May 24, 2016 By Larry Loeb 2 min read

The University of Texas at Austin recently announced that two of its researchers have developed a new and better method to perform the computations necessary for random number generation. This new method will have important implications for cryptography and, by extension, cybersecurity.

Researchers Make a Splash

A draft paper has been published and will be presented in June at the Symposium on Theory of Computing. The paper is one of three that have been recognized as the best submitted for consideration.

Since it was published for peer review and comment on the Electronic Colloquium on Computational Complexity in August 2015, it has been causing excitement in the math community.

In its official statement, the university quoted Yael Kalai, a senior researcher working in cryptography at Microsoft Research New England. “When I heard about it, I couldn’t sleep,” he said. “I was so excited. I couldn’t believe it. I ran to the (online) archive to look at the paper. It’s really a masterpiece.”

Truly Random Number Generation Could Change Security

Random numbers, used to generate the keys necessary for encryption, are the very basis of information security. If random numbers are not truly random, and can therefore be reproduced, the keys can be reproduced as well.

The paper described a method of combining two “weakly random” number sequences and combining them into one truly random number. It sidesteps previous restrictions on the streams used in computation, requiring fewer computational resources and ultimately resulting in a higher quality of randomness.

The Immediate Impact

The work is theoretical in scope but outlines a way that practical implementations may be pursued. However, SecurityWeek reported that Vincent Rijmen, one of the two developers of the Advanced Encryption Standard (AES), is interested but not terrifically enthusiastic about the project.

It “is probably important within its own context,” he told SecurityWeek, “that is, deep theoretic reflections on randomness and cryptography.”

The opinion that it does not currently hold much practical value within cryptography was also reinforced by professor Ross Anderson of the Cambridge University Computer Laboratory. He told SecurityWeek that it was “unlikely to be of much engineering interest” for the time being.

Despite the need for further development, the concept of using less computationally expensive randomness streams for truly random number generation can only benefit encryption efforts.

More from

Evolving red teaming for AI environments

2 min read - As AI becomes more ingrained in businesses and daily life, the importance of security grows more paramount. In fact, according to the IBM Institute for Business Value, 96% of executives say adopting generative AI (GenAI) makes a security breach likely in their organization in the next three years. Whether it’s a model performing unintended actions, generating misleading or harmful responses or revealing sensitive information, in the AI era security can no longer be an afterthought to innovation.AI red teaming is emerging…

What we can learn from the best collegiate cyber defenders

3 min read - This year marked the 19th season of the National Collegiate Cyber Defense Competition (NCCDC). For those unfamiliar, CCDC is a competition that puts student teams in charge of managing IT for a fictitious company as the network is undergoing a fundamental transformation. This year the challenge involved a common scenario: a merger. Ten finalist teams were tasked with managing IT infrastructure during this migrational period and, as an added bonus, the networks were simultaneously attacked by a group of red…

A spotlight on Akira ransomware from X-Force Incident Response and Threat Intelligence

7 min read - This article was made possible thanks to contributions from Aaron Gdanski.IBM X-Force Incident Response and Threat Intelligence teams have investigated several Akira ransomware attacks since this threat actor group emerged in March 2023. This blog will share X-Force’s unique perspective on Akira gained while observing the threat actors behind this ransomware, including commands used to deploy the ransomware, active exploitation of CVE-2023-20269 and analysis of the ransomware binary.The Akira ransomware group has gained notoriety in the current cybersecurity landscape, underscored…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today