September 6, 2017 By Douglas Bonderud 2 min read

Quantum data protection is the holy grail of encryption. Theoretically unhackable thanks to Heisenberg’s uncertainty principle and promising accurate information transfer at any distance, the field has seen major interest and investment over the past few years.

Still, challenges remain, including the development of a viable quantum memory storage solution. Historically, these systems have been too large to fit on a computer chip. However, according to Wired, researchers from the California Institute of Technology (CalTech) recently co-authored a paper that described a new quantum storage technology small enough to fit the bill. Is this the birth of the unhackable box?

Quantum Qualifications

By storing data in photons, organizations can transmit information at the speed of light, meaning that if the problem of absorption can be solved — photon-based signals are eventually absorbed into their communication medium — there’s huge potential for near-instantaneous connections.

But the bigger benefit comes from the consequence of observing particles. According to the uncertainty principle, it’s impossible to know the position and momentum of a particle because the mere act of observing a particle changes its behavior. As a result, attempts to extract quantum information alter the photon’s state, warning sender and recipient of the attempted breach.

Add in the benefits of quantum entanglement, which occurs in particle pairs created at the same time and causes their state to be interdependent, and there’s real promise here. Even if fraudsters could crack quantum boundaries, their actions would destroy the information they want.

The Evolution of Quantum Data Protection

There’s a pressing need for more effective data protection practices. As the Wired piece pointed out, experts anticipate that even advanced encryption algorithms won’t be enough to circumvent increased computing power for much longer.

But progress is well underway. The quantum storage box uses a nano-sized cavity filled with neodymium inside a crystal structure made of yttrium orthovanadate (YVO4), which acts as a photon resonator to enhance light-atom interactions and improve photon absorption. While the box alone won’t enable secure quantum communication, Andrei Faraon of CalTech, who co-authored the paper, noted that “it could be used to transfer information at the quantum level at long distances via optical fibers.”

Additional Efforts

Other efforts are also gaining ground. A research team from the University of Ottawa recently sent a 4-D encrypted message — so named because each photon encodes two bits of information — through the air “in realistic city conditions, including turbulence.” So far, the researchers have sent information just 0.3 km (0.18 miles), but the next step involves network links that are more than 5 km (3.1 miles) apart.

According to The Economist, Chinese researchers are developing a quantum-based satellite network that has already sent a secure key between the origin satellite and a ground-based station 2,500 km away, providing clear evidence that quantum entanglement can be maintained even through the vacuum of space.

Ideally, quantum data protection offers a way to safeguard transmissions over any distance by both notifying the sender and receiver of any tampering and rendering compromised information useless. While there’s still no guarantee of commercial viability, the field took a significant step forward with the creation of a chip-sized, fully functioning quantum box.

More from

Airplane cybersecurity: Past, present, future

4 min read - With most aviation processes now digitized, airlines and the aviation industry as a whole must prioritize cybersecurity. If a cyber criminal launches an attack that affects a system involved in aviation — either an airline’s system or a third-party vendor — the entire process, from safety to passenger comfort, may be impacted.To improve security in the aviation industry, the FAA recently proposed new rules to tighten cybersecurity on airplanes. These rules would “protect the equipment, systems and networks of transport…

Protecting your digital assets from non-human identity attacks

4 min read - Untethered data accessibility and workflow automation are now foundational elements of most digital infrastructures. With the right applications and protocols in place, businesses no longer need to feel restricted by their lack of manpower or technical capabilities — machines are now filling those gaps.The use of non-human identities (NHIs) to power business-critical applications — especially those used in cloud computing environments or when facilitating service-to-service connections — has opened the doors for seamless operational efficiency. Unfortunately, these doors aren’t the…

Communication platforms play a major role in data breach risks

4 min read - Every online activity or task brings at least some level of cybersecurity risk, but some have more risk than others. Kiteworks Sensitive Content Communications Report found that this is especially true when it comes to using communication tools.When it comes to cybersecurity, communicating means more than just talking to another person; it includes any activity where you are transferring data from one point online to another. Companies use a wide range of different types of tools to communicate, including email,…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today