Since the widespread and growing use of ChatGPT and other large language models (LLMs) in recent years, cybersecurity has been a top concern. Among the many questions, cybersecurity professionals wondered how effective these tools were in launching an attack. Cybersecurity researchers Richard Fang, Rohan Bindu, Akul Gupta and Daniel Kang recently performed a study to determine the answer. The conclusion: They are very effective.

ChatGPT 4 quickly exploited one-day vulnerabilities

During the study, the team used 15 one-day vulnerabilities that occurred in real life. One-day vulnerabilities refer to the time between when an issue is discovered and the patch is created, meaning it’s a known vulnerability. Cases included websites with vulnerabilities, container management software and Python packages. Because all the vulnerabilities came from the CVE database, they included the CVE description.

The LLM agents also had web browsing elements, a terminal, search results, file creation and a code interpreter. Additionally, the researchers used a very detailed prompt with a total of 1,056 tokens and 91 lines of code. The prompt also included debugging and logging statements. The prompts did not, however, include sub-agents or a separate planning module.

The team quickly learned that ChatGPT was able to correctly exploit one-day vulnerabilities 87% of the time. All the other methods tested, which included LLMs and open-source vulnerability scanners, were unable to exploit any vulnerabilities. GPT-3.5 was also unsuccessful in detecting vulnerabilities. According to the report, GPT-4 only failed on two vulnerabilities, both of which are very challenging to detect.

“The Iris web app is extremely difficult for an LLM agent to navigate, as the navigation is done through JavaScript. As a result, the agent tries to access forms/buttons without interacting with the necessary elements to make it available, which stops it from doing so. The detailed description for HertzBeat is in Chinese, which may confuse the GPT-4 agent we deploy as we use English for the prompt,” explained the report authors.

Explore AI cybersecurity solutions

ChatGPT’s success rate still limited by CVE code

The researchers concluded that the reason for the high success rate lies in the tool’s ability to exploit complex multiple-step vulnerabilities, launch different attack methods, craft codes for exploits and manipulate non-web vulnerabilities.

The study also found a significant limitation with Chat GPT for finding vulnerabilities. When asked to exploit a vulnerability without the CVE code, the LLM was not able to perform at the same level. Without the CVE code, GPT-4 was only successful 7% of the time, which is an 80% decrease. Because of this big gap, researchers stepped back and isolated how often GPT-4 could determine the correct vulnerability, which was 33.3% of the time.

“Surprisingly, we found that the average number of actions taken with and without the CVE description differed by only 14% (24.3 actions vs 21.3 actions). We suspect this is driven in part by the context window length, further suggesting that a planning mechanism and subagents could increase performance,” wrote the researchers.

The effect of LLMs on one-day vulnerabilities in the future

The researchers concluded that their study showed that LLMs have the ability to autonomously exploit one-day vulnerabilities, but only GPT-4 can currently achieve this mark. However, the concern is that the LLM’s ability and functionality will only grow in the future, making it an even more destructive and powerful tool for cyber criminals.

“Our results show both the possibility of an emergent capability and that uncovering a vulnerability is more difficult than exploiting it. Nonetheless, our findings highlight the need for the wider cybersecurity community and LLM providers to think carefully about how to integrate LLM agents in defensive measures and about their widespread deployment,” concludes the researchers.

More from Artificial Intelligence

Preparing for the future of data privacy

4 min read - The focus on data privacy started to quickly shift beyond compliance in recent years and is expected to move even faster in the near future. Not surprisingly, the Thomson Reuters Risk & Compliance Survey Report found that 82% of respondents cited data and cybersecurity concerns as their organization’s greatest risk. However, the majority of organizations noticed a recent shift: that their organization has been moving from compliance as a “check the box” task to a strategic function.With this evolution in…

Cloud Threat Landscape Report: AI-generated attacks low for the cloud

2 min read - For the last couple of years, a lot of attention has been placed on the evolutionary state of artificial intelligence (AI) technology and its impact on cybersecurity. In many industries, the risks associated with AI-generated attacks are still present and concerning, especially with the global average of data breach costs increasing by 10% from last year.However, according to the most recent Cloud Threat Landscape Report released by IBM’s X-Force team, the near-term threat of an AI-generated attack targeting cloud computing…

Testing the limits of generative AI: How red teaming exposes vulnerabilities in AI models

4 min read - With generative artificial intelligence (gen AI) on the frontlines of information security, red teams play an essential role in identifying vulnerabilities that others can overlook.With the average cost of a data breach reaching an all-time high of $4.88 million in 2024, businesses need to know exactly where their vulnerabilities lie. Given the remarkable pace at which they’re adopting gen AI, there’s a good chance that some of those vulnerabilities lie in AI models themselves — or the data used to…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today