January 11, 2021 By Fred Donovan 2 min read

STRIDE threat modeling is an important tool in a security expert’s arsenal. Threat modeling provides security teams with a practical framework for dealing with a threat. For example, the STRIDE model offers a proven methodology of next steps. It can suggest what defenses to include, the likely attacker’s profile, likely attack vectors and the assets attackers want most. It can help find threats, rank which are most serious, schedule fixes and develop plans to secure IT resources.

Good threat modeling is more important than ever. And, every practical use of threat modeling is based on a specific methodology. Among them is STRIDE, one of the earliest and most effective.

What is STRIDE threat modeling?

STRIDE is an acronym for six threat categories: Spoofing identity, Tampering with data, Repudiation threats, Information disclosure, Denial of service and Elevation of privileges. Two Microsoft engineers, Loren Kohnfelder and Praerit Garg, developed STRIDE in the late 1990s.

Teams can use the STRIDE threat model to spot threats during the design phase of an app or system. The first step helps find potential threats using a proactive process. The design of the system forms the basis for spotting threats. The next steps include finding the risks inherent in the way the system has been implemented, and then taking actions to close gaps.

Specifically, STRIDE aims to ensure an app or system fulfills the CIA triad (confidentiality, integrity and availability). Its designers created it to ensure that Windows software developers considered threats during the design phase.

You should use STRIDE along with a model of the target system. Construct this model in parallel, including a breakdown of processes, data stores, data flows and trust boundaries.

Using STRIDE, develop defenses for each threat. For example, imagine you find that an admin database is exposed to tampering with data, information disclosure and denial-of-service threats. In that case, you can implement access control logs, secure socket layer/transport layer security or IPSec authentication to counter those threats.

Using STRIDE in the cloud

STRIDE threat modeling can also be used to counter emerging threats to cloud computing, which is becoming common in corporate America. Cloud computing has quite different needs than those of on-premises computing. By nature, it opens the system up to risks and threats that may not have an on-premises counterpart. These need to be assessed to avoid attacks.

To deal with these threats, use the STRIDE threat model to spot and apply fixes. It helps uncover monitoring, logging and alerting needs. Using STRIDE, develop defenses for each threat: authentication, data protection, confirmation, confidentiality, availability and authorization. Then, rank the emerging threats according to damage, reproducibility, exploitability, affected users and discoverability.

You can also employ the STRIDE threat model to find and repair threats to Internet of things (IoT) devices, which are now widely deployed in companies. Threat modeling helps teams to study the threats IoT devices face, to avoid opening it up to bugs and to find openings already in existing systems.

STRIDE threat modeling offers a way to organize the many possible threats facing enterprise today. It helps experts better prepare for future and emerging threats, and enables security teams to respond better to a changing world of threats.

More from Threat Hunting

3 recommendations for adopting generative AI for cyber defense

3 min read - In the past eighteen months, generative AI (gen AI) has gone from being the source of jaw-dropping demos to a top strategic priority in nearly every industry. A majority of CEOs report feeling under pressure to invest in gen AI. Product teams are now scrambling to build gen AI into their solutions and services. The EU and US are beginning to put new regulatory frameworks in place to manage AI risks.Amid all this commotion, hackers and other cybercriminals are hardly…

What we can learn from the best collegiate cyber defenders

3 min read - This year marked the 19th season of the National Collegiate Cyber Defense Competition (NCCDC). For those unfamiliar, CCDC is a competition that puts student teams in charge of managing IT for a fictitious company as the network is undergoing a fundamental transformation. This year the challenge involved a common scenario: a merger. Ten finalist teams were tasked with managing IT infrastructure during this migrational period and, as an added bonus, the networks were simultaneously attacked by a group of red…

Ermac malware: The other side of the code

6 min read - When the Cerberus code was leaked in late 2020, IBM Trusteer researchers projected that a new Cerberus mutation was just a matter of time. Multiple actors used the leaked Cerberus code but without significant changes to the malware. However, the MalwareHunterTeam discovered a new variant of Cerberus — known as Ermac (also known as Hook) — in late September of 2022.To better understand the new version of Cerberus, we can attempt to shed light on the behind-the-scenes operations of the…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today