January 11, 2021 By Fred Donovan 2 min read

STRIDE threat modeling is an important tool in a security expert’s arsenal. Threat modeling provides security teams with a practical framework for dealing with a threat. For example, the STRIDE model offers a proven methodology of next steps. It can suggest what defenses to include, the likely attacker’s profile, likely attack vectors and the assets attackers want most. It can help find threats, rank which are most serious, schedule fixes and develop plans to secure IT resources.

Good threat modeling is more important than ever. And, every practical use of threat modeling is based on a specific methodology. Among them is STRIDE, one of the earliest and most effective.

What is STRIDE threat modeling?

STRIDE is an acronym for six threat categories: Spoofing identity, Tampering with data, Repudiation threats, Information disclosure, Denial of service and Elevation of privileges. Two Microsoft engineers, Loren Kohnfelder and Praerit Garg, developed STRIDE in the late 1990s.

Teams can use the STRIDE threat model to spot threats during the design phase of an app or system. The first step helps find potential threats using a proactive process. The design of the system forms the basis for spotting threats. The next steps include finding the risks inherent in the way the system has been implemented, and then taking actions to close gaps.

Specifically, STRIDE aims to ensure an app or system fulfills the CIA triad (confidentiality, integrity and availability). Its designers created it to ensure that Windows software developers considered threats during the design phase.

You should use STRIDE along with a model of the target system. Construct this model in parallel, including a breakdown of processes, data stores, data flows and trust boundaries.

Using STRIDE, develop defenses for each threat. For example, imagine you find that an admin database is exposed to tampering with data, information disclosure and denial-of-service threats. In that case, you can implement access control logs, secure socket layer/transport layer security or IPSec authentication to counter those threats.

Using STRIDE in the cloud

STRIDE threat modeling can also be used to counter emerging threats to cloud computing, which is becoming common in corporate America. Cloud computing has quite different needs than those of on-premises computing. By nature, it opens the system up to risks and threats that may not have an on-premises counterpart. These need to be assessed to avoid attacks.

To deal with these threats, use the STRIDE threat model to spot and apply fixes. It helps uncover monitoring, logging and alerting needs. Using STRIDE, develop defenses for each threat: authentication, data protection, confirmation, confidentiality, availability and authorization. Then, rank the emerging threats according to damage, reproducibility, exploitability, affected users and discoverability.

You can also employ the STRIDE threat model to find and repair threats to Internet of things (IoT) devices, which are now widely deployed in companies. Threat modeling helps teams to study the threats IoT devices face, to avoid opening it up to bugs and to find openings already in existing systems.

STRIDE threat modeling offers a way to organize the many possible threats facing enterprise today. It helps experts better prepare for future and emerging threats, and enables security teams to respond better to a changing world of threats.

More from Threat Hunting

Ermac malware: The other side of the code

6 min read - When the Cerberus code was leaked in late 2020, IBM Trusteer researchers projected that a new Cerberus mutation was just a matter of time. Multiple actors used the leaked Cerberus code but without significant changes to the malware. However, the MalwareHunterTeam discovered a new variant of Cerberus — known as Ermac (also known as Hook) — in late September of 2022.To better understand the new version of Cerberus, we can attempt to shed light on the behind-the-scenes operations of the…

Web injections are back on the rise: 40+ banks affected by new malware campaign

8 min read - Web injections, a favored technique employed by various banking trojans, have been a persistent threat in the realm of cyberattacks. These malicious injections enable cyber criminals to manipulate data exchanges between users and web browsers, potentially compromising sensitive information. In March 2023, security researchers at IBM Security Trusteer uncovered a new malware campaign using JavaScript web injections. This new campaign is widespread and particularly evasive, with historical indicators of compromise (IOCs) suggesting a possible connection to DanaBot — although we…

Hive0051’s large scale malicious operations enabled by synchronized multi-channel DNS fluxing

12 min read - For the last year and a half, IBM X-Force has actively monitored the evolution of Hive0051’s malware capabilities. This Russian threat actor has accelerated its development efforts to support expanding operations since the onset of the Ukraine conflict. Recent analysis identified three key changes to capabilities: an improved multi-channel approach to DNS fluxing, obfuscated multi-stage scripts, and the use of fileless PowerShell variants of the Gamma malware. As of October 2023, IBM X-Force has also observed a significant increase in…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today