Bitcoin and other cryptocurrencies have been a hot topic ever since the seminal white paper “Bitcoin: A Peer-to-Peer Electronic Cash System” was written by someone (or a group of someones) using the pseudonym Satoshi Nakamoto.

Cryptocurrency is built on methods for blockchains used on a peer-to-peer network of independent nodes. Nakamoto (or whoever) figured out that to decentralize a currency, one had to overcome the double spending case where a coin is used twice. This was accomplished by time stamping all digitally signed transaction records and taking their hash in a specific way.

The Basic Method of Blockchains

The method seems complex on first viewing, but it’s actually recursive and simple. As Nakamoto put it, “The network time stamps transactions by hashing them into an ongoing chain of hash-based proof of work, forming a record that cannot be changed without redoing the proof of work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they’ll generate the longest chain and outpace attackers.”

Proof of Work

OK, what exactly is this proof of work? First introduced in Adam Beck’s Hashcash system in 2002, proof of work is the idea tjat each node in the network has to show it has done some computational work on each block it creates before that block can be added to the chain. The specific method of this involves scanning for a value that, when hashed with a hash generator like SHA-256, will begin with a number of zero bits.

The average work required for the number of zero bits is exponential and can be verified by executing only a single hash. This means that as blocks are added to the chain, the work to change a past block would include redoing the computational work in all the blocks that follow it.

A node shows that it worked to create a block by creating a hash of its block header. This hash does not exceed a certain value.

How Do We Establish if a Node Is Honest?

Honest nodes don’t have to do the computational work needed to change the blocks in a blockchain. That means that they will be able to create longer blockchains than dishonest ones in the same length of time. As the blockchain gets longer, the probability of a slower attacker catching up to it grows exponentially.

New blocks will only be added to the blockchain if their hash is at least as challenging as a difficulty value expected by the network’s consensus protocol. The difficulty is established by checking the difference in the time stamps (and hence how long it took to generate the last blocks in the chain) every 2,016 blocks.

The amount of computational power needed to create multiple hashes on blocks both identifies good players and bad ones in a blockchain net. Good ones get their chains longer, faster — and all of this work helps blockchains secure themselves from malicious actors.

More from Banking & Finance

Cost of a data breach 2023: Financial industry impacts

3 min read - According to the IBM Cost of a Data Breach Report 2023, the global average cost of a data breach in 2023 was $4.45 million, 15% more than in 2020. In response, 51% of organizations plan to increase cybersecurity spending this year. For the financial industry, however, global statistics don’t tell the whole story. Finance firms lose approximately $5.9 million per data breach, 28% higher than the global average. In addition, evolving regulatory concerns play a role in how financial companies…

Gozi strikes again, targeting banks, cryptocurrency and more

3 min read - In the world of cybercrime, malware plays a prominent role. One such malware, Gozi, emerged in 2006 as Gozi CRM, also known as CRM or Papras. Initially offered as a crime-as-a-service (CaaS) platform called 76Service, Gozi quickly gained notoriety for its advanced capabilities. Over time, Gozi underwent a significant transformation and became associated with other malware strains, such as Ursnif (Snifula) and Vawtrak/Neverquest. Now, in a recent campaign, Gozi has set its sights on banks, financial services and cryptocurrency platforms,…

The rise of malicious Chrome extensions targeting Latin America

9 min read - This post was made possible through the research contributions provided by Amir Gendler and Michael  Gal. In its latest research, IBM Security Lab has observed a noticeable increase in campaigns related to malicious Chrome extensions, targeting  Latin America with a focus on financial institutions, booking sites, and instant messaging. This trend is particularly concerning considering Chrome is one of the most widely used web browsers globally, with a market share of over 80% using the Chromium engine. As such, malicious…

BlotchyQuasar: X-Force Hive0129 targeting financial institutions in LATAM with a custom banking trojan

16 min read - In late April through May 2023, IBM Security X-Force found several phishing emails leading to packed executable files delivering malware we have named BlotchyQuasar, likely developed by a group X-Force tracks as Hive0129. BlotchyQuasar is hardcoded to collect credentials from multiple Latin American-based banking applications and websites used within public and private environments. Similar operations conducted in late 2022 have also been noted delivering an earlier variant of this modified QuasarRAT by likely Spanish-speaking actors. BlotchyQuasar, which X-Force describes as…