Nowadays, there is a lot of noise about the Internet of Things (IoT), as the technology has finally emerged into mainstream public view. IoT technology includes everything from wearable devices equipped with sensors that collect biometric data and smart home systems that enable users to control their lights and thermostats to connected toothbrushes designed to help improve brushing habits. These devices typically come with built-in electronics, software, sensors and actuators. They are also assigned unique IP addresses, which enable them to communicate and exchange data with other machines.

IoT devices make our lives easier. Smart home technology, for example, can help users improve energy efficiency by enabling them to turn on (and off) lights and appliances with the tap of a touchscreen. Some connected devices, such as smart medical equipment and alarm systems, can even help save lives.

However, there are also serious security risks associated with this technology. As the IoT ecosystem expands, so does the attack surface for cybercriminals to exploit. In other words, the more we rely on connected technology in our day-to-day lives, the more vulnerable we are to the cyberthreats that are increasingly tailored to exploit vulnerabilities and design flaws in IoT devices.

This presents a daunting challenge for cybersecurity professionals. They must not only protect their own devices, but they must also defend against threats targeting external machines that might connect to their networks.

Avoiding IoT Security Pitfalls

Potential consequences of an IoT data breach include loss of sensitive personal or enterprise information, which can lead to significant financial and reputational damage, massive distributed denial-of-service (DDoS) attacks designed to take down major websites and more. These incidents often stem from misconfigurations, default or easy-to-guess passwords and inherent vulnerabilities in the devices themselves.

Although many experts are calling for regulatory bodies to implement industrywide standards to hold IoT device manufacturers and developers accountable for these pervasive flaws, progress has been slow on that front. In the meantime, IT professionals and device owners must take security into their own hands by following basic IoT best practices.

The most important rule of thumb for IoT devices manufacturers is to test security during each phase of the development process. It is much easier (and less costly) to nip security issues in the bud during the prerelease stages than to waste resources fixing bugs after devices have infiltrated the market. Once developed, devices should undergo rigorous application security testing, security architecture review and network vulnerability assessment.

When devices ship to end users, they should not come with default passwords. Instead, they should require users to establish strong, unique credentials during the installation process. Since IoT devices collect so much personal data, including biometric information, credit card details and locational data, it’s important to embed encryption capabilities according to the least privilege principle.

Protecting Data Privacy

For organizations deploying IoT technology, it’s crucial to establish an incident response team to remediate vulnerabilities and disclose data breaches to the public. All devices should be capable of receiving remote updates to minimize the potential for threat actors to exploit outlying weaknesses to steal data. In addition, security leaders must invest in reliable data protection and storage solutions to protect users’ privacy and sensitive enterprise assets.

This is especially critical given the increasing need to align with data privacy laws, many of which impose steep fines for noncompliance. Because some regulations afford users the right to demand the erasure of their personal information, this capability must be built into all IoT devices that collect user data. Organizations must also establish policies to define how data is collected, consumed and retained in the IT environment.

To ensure the ongoing integrity of IoT deployments, security teams should conduct regular gap analyses to monitor the data generated by connected devices. This analysis should include both flow- and packet-based anomaly detection.

Awareness Is the Key to IoT Security

As with any technology, an organization’s IoT deployment is only as secure as the human beings who operate it. Awareness training and ongoing education throughout all levels of the enterprise, therefore, are critical. This applies to both device manufacturers and the companies that invest in their technology.

The IoT has the potential to boost efficiency and productivity in both domestic and enterprise settings. However, the exposure of IoT data — or the illegal takeover of devices themselves — can cause immeasurable damage to a business’ bottom line and reputation. The keys to unlocking the benefits and avoiding the pitfalls of this technology include embedding security into apps and devices throughout the development life cycle, investing in robust data protection solutions and prioritizing security education throughout the organization.

Listen to the podcast series: Five Indisputable Facts about IoT Security

More from Data Protection

Transitioning to Quantum-Safe Encryption

With their vast increase in computing power, quantum computers promise to revolutionize many fields. Artificial intelligence, medicine and space exploration all benefit from this technological leap — but that power is also a double-edged sword. The risk is that threat actors could abuse quantum computers to break the key cryptographic algorithms we depend upon for the safety of our digital world. This poses a threat to a wide range of critical areas. Fortunately, alternate cryptographic algorithms that are safe against…

How Do You Plan to Celebrate National Computer Security Day?

In October 2022, the world marked the 19th Cybersecurity Awareness Month. October might be over, but employers can still talk about awareness of digital threats. We all have another chance before then: National Computer Security Day. The History of National Computer Security Day The origins of National Computer Security Day trace back to 1988 and the Washington, D.C. chapter of the Association for Computing Machinery’s Special Interest Group on Security, Audit and Control. As noted by National Today, those in…

Resilient Companies Have a Disaster Recovery Plan

Historically, disaster recovery (DR) planning focused on protection against unlikely events such as fires, floods and natural disasters. Some companies mistakenly view DR as an insurance policy for which the likelihood of a claim is low. With the current financial and economic pressures, cutting or underfunding DR planning is a tempting prospect for many organizations. That impulse could be costly. Unfortunately, many companies have adopted newer technology delivery models without DR in mind, such as Cloud Infrastructure-as-a-Service (IaaS), Software-as-a-Service (SaaS)…

Millions Lost in Minutes — Mitigating Public-Facing Attacks

In recent years, many high-profile companies have suffered destructive cybersecurity breaches. These public-facing assaults cost organizations millions of dollars in minutes, from stock prices to media partnerships. Fast Company, Rockstar, Uber, Apple and more have all been victims of these costly and embarrassing attacks. The total average cost of a data breach has increased by 2.6% since 2021 and is now $4.35 million. Organizations that don't deploy zero trust security models also incur an average of $1 million more in…