People are beginning to get used to the easy life enabled by smart homes and the Internet of Things (IoT), but they are at risk if they do not prioritize security. The IoT has increased quality of life for many; it has helped the differently abled and the elderly to continue living independently and laid the technological groundwork for another industrial revolution. On the other hand, it has also enticed cybercriminals to commit fraud in new and novel ways.

The Challenge of Combating IoT Crime

In October 2015, the FBI advised citizens to be vigilant with their IoT devices. In recent years, cybercriminals have progressed from targeting computers and networks to people, medical devices, power grids, cars, kitchen appliances and other connected devices. In addition, search engines such as Shodan and Censys create pools of potential IoT devices for fraudsters to target.

Smart devices are the main components of the IoT. They are easy to use and deploy and are usually connected to the internet without any security enabled. These devices range from smart locks to medical equipment, TVs, refrigerators, light controls, security systems, baby monitors and automobiles, any of which can be used to steal personal information, spread malicious code, eavesdrop or even interfere with the operation of machinery. In a worst-case scenario, these malicious acts can potentially put human lives at risk.

Due to the rising number of connected devices, it has become necessary to develop new approaches and tap all available resources to combat future crimes. This new strategy should be implemented in the early stages of the investigation, particularly when investigators don’t know where to begin.

Listen to the podcast series: Five Indisputable Facts About IoT Security

Classifying Cybercrime With an IoT Perspective

It is difficult to collect evidence to support IoT crime cases, and even more challenging to connect various pieces of evidence. That’s why it’s important to consider the classification of the crime, the methods of collecting evidence and all relevant laws and regulations.

Classification is a data mining technique that categorizes data to aid in a more accurate analysis. Classification should also help analysts predict the target class for each new case in the data. IoT-related crimes can be categorized into the following three classes.

1. The IoT as a Target

These crimes are relatively new, which explains why organizations and individuals around the world are largely unprepared to combat them. They are usually committed by a select group of criminals who have the computer skills and scientific knowledge to execute attacks on smart devices. This class of IoT crime involves attackers exploiting vulnerabilities in smart devices, such as pacemakers, medical infusion pumps, smart cars and sniper rifles, and executing malicious instructions that could endanger human life.

2. The IoT as a Tool

The target of this type of crime is not the IoT device itself, but the smart device used to commit the offense. In this scenario, identifying and prosecuting the perpetrators is more difficult. This class of crime usually requires less technical expertise and depends on manufacturer-introduced vulnerabilities. Since security is typically not the main focus of device manufacturers, IoT devices are perfect tools for attackers to build botnets to execute large distributed denial-of-service (DDOS) attacks. A prominent example is the Mirai botnet, which used connected devices to attack various high-profile technology providers. Attackers typically exploit vulnerabilities such as fixed encryption keys, default passwords and failure to patch or update device firmware.

3. The IoT as an Eyewitness

These are the crimes that have existed for centuries, such as trespassing, homicide and kidnapping. The only difference here is that these crimes take place in smart environments. Motion sensors, climate controls and smart-light logs can record the exact time of an intrusion and indicate the intruder’s route throughout the house, which can help investigators determine where to look for fingerprints. Smart locks can indicate whether the intruder brute-forced, hacked or leveraged a legitimate code to enter the smart home. Additionally, wireless access points (WAP) may have historical logs of wireless connection attempts and other local WAP activities, which could contain unintentional connection attempts from the intruder’s phone.

The Value of IoT Crime Classification

Classification of IoT crimes can enable investigators to efficiently assess large amounts of information and rapidly extract intelligence from the huge amount of collected data. It also reduces the time it takes to identify threat actors and helps investigators focus on a smaller number of potential suspects. Studying similar cases from the same class should provide guidance on relevant evidence, the legal admissibility process and evidence verification methods.

Classification of IoT crimes can also prepare investigators to combat emerging threats, even in the absence of proper processes. By assigning a new crime to a predefined category, investigators can begin collecting and examining evidence based on past experience.

More from Intelligence & Analytics

Hive0051’s large scale malicious operations enabled by synchronized multi-channel DNS fluxing

12 min read - For the last year and a half, IBM X-Force has actively monitored the evolution of Hive0051’s malware capabilities. This Russian threat actor has accelerated its development efforts to support expanding operations since the onset of the Ukraine conflict. Recent analysis identified three key changes to capabilities: an improved multi-channel approach to DNS fluxing, obfuscated multi-stage scripts, and the use of fileless PowerShell variants of the Gamma malware. As of October 2023, IBM X-Force has also observed a significant increase in…

Email campaigns leverage updated DBatLoader to deliver RATs, stealers

11 min read - IBM X-Force has identified new capabilities in DBatLoader malware samples delivered in recent email campaigns, signaling a heightened risk of infection from commodity malware families associated with DBatLoader activity. X-Force has observed nearly two dozen email campaigns since late June leveraging the updated DBatLoader loader to deliver payloads such as Remcos, Warzone, Formbook, and AgentTesla. DBatLoader malware has been used since 2020 by cybercriminals to install commodity malware remote access Trojans (RATs) and infostealers, primarily via malicious spam (malspam). DBatLoader…

New Hive0117 phishing campaign imitates conscription summons to deliver DarkWatchman malware

8 min read - IBM X-Force uncovered a new phishing campaign likely conducted by Hive0117 delivering the fileless malware DarkWatchman, directed at individuals associated with major energy, finance, transport, and software security industries based in Russia, Kazakhstan, Latvia, and Estonia. DarkWatchman malware is capable of keylogging, collecting system information, and deploying secondary payloads. Imitating official correspondence from the Russian government in phishing emails aligns with previous Hive0117 campaigns delivering DarkWatchman malware, and shows a possible significant effort to induce a sense of urgency as…

X-Force releases detection & response framework for managed file transfer software

5 min read - How AI can help defenders scale detection guidance for enterprise software tools If we look back at mass exploitation events that shook the security industry like Log4j, Atlassian, and Microsoft Exchange when these solutions were actively being exploited by attackers, the exploits may have been associated with a different CVE, but the detection and response guidance being released by the various security vendors had many similarities (e.g., Log4shell vs. Log4j2 vs. MOVEit vs. Spring4Shell vs. Microsoft Exchange vs. ProxyShell vs.…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today