February 19, 2019 By Mark Buckwell 3 min read

This is the second installment in a multipart series about data encryption. Be sure to read part one for the full story.

Now that we understand the common threats facing organizations and how to select the right solution for data-at-rest encryption (DaRE), what’s the next step in your data encryption journey?

Encrypting data is the relatively easy part of the solution, but securely managing keys is a major challenge. According to the National Institute of Standards and Technology (NIST), “Keys are analogous to the combination of a safe. If an adversary knows the combination, the strongest safe provides no security against penetration. Similarly, poor key management may easily compromise strong algorithms.”

DaRE needs more than software to encrypt data, because the keys still need to be managed. Let’s dive deeper into the key management challenge, the core components needed to manage keys effectively and the open standards security teams should use in their cloud environments.

The Encryption Key Management Challenge

In DaRE solutions, symmetric encryption is used for speed, and the same key is used to encrypt and decrypt the data. The security of the system relies on the encryption key being kept secret. Most organizations now encrypt disks within a laptop. To start the decrypting process, a password must be entered manually, which is impractical for cloud environments with thousands of servers.

If the data is being decrypted after a system has started, the encryption software can use a secret key stored locally on the server, which will be in an obscured format that can be decoded. The risk here is that a privileged insider or threat actor could potentially decode the key and decrypt the data. Therefore, security teams need a way to protect their encryption keys.

Unscrambling the Encryption Solution Components

A typical cloud encryption solution has three core components: an encryption client, a key management server (KMS) and a hardware security module (HSM).

The encryption client performs the actual encryption using a data encryption key (DEK). Since it needs to be stored encrypted, the DEK itself is obscured using a key encryption key (KEK).

The KEK is obtained from a KMS, which contains many hundreds or thousands of keys in a database. Once again, the KEKs need to be encrypted using a master encryption key (MEK) because there is a risk that the KMS could be compromised. The MEK is stored in the HSM, which enables the security team to store a key in hardware that physically prevents tampering or loss of the MEK.

Creating an Open Encryption Solution

In the past, encryption solutions have been built around proprietary protocols, making integration difficult. That’s why OASIS defined a set of standards to improve interoperability between encryption and key management solutions from different vendors.

Over the past few years, vendors have increasingly adopted standard protocols for communication between the KMS and HSM, such as OASIS PKCS#11, as well as communication between the encryption client and the KSM, such as the OASIS KMIP protocol. Look for solutions that use these standards when putting together your encryption strategy.

Encryption Solutions Are Maturing

With a standard set of components that support open standards, encryption technology is gradually maturing to make implementation and encryption key management easier. In cloud environments, these components are often available in a lower-cost implementation known as bring-your-own-key (BYOK), which integrates with supported DaRE solutions. These solutions are now reaching high levels of assurance with HSMs offering FIPS 140-2 Level 4 in the cloud.

Depending on your needs, you can develop encryption solutions based on open standards from components you build and run yourself or source them as managed services from cloud providers.

More from Data Protection

3 Strategies to overcome data security challenges in 2024

3 min read - There are over 17 billion internet-connected devices in the world — and experts expect that number will surge to almost 30 billion by 2030.This rapidly growing digital ecosystem makes it increasingly challenging to protect people’s privacy. Attackers only need to be right once to seize databases of personally identifiable information (PII), including payment card information, addresses, phone numbers and Social Security numbers.In addition to the ever-present cybersecurity threats, data security teams must consider the growing list of data compliance laws…

How data residency impacts security and compliance

3 min read - Every piece of your organization’s data is stored in a physical location. Even data stored in a cloud environment lives in a physical location on the virtual server. However, the data may not be in the location you expect, especially if your company uses multiple cloud providers. The data you are trying to protect may be stored literally across the world from where you sit right now or even in multiple locations at the same time. And if you don’t…

From federation to fabric: IAM’s evolution

15 min read - In the modern day, we’ve come to expect that our various applications can share our identity information with one another. Most of our core systems federate seamlessly and bi-directionally. This means that you can quite easily register and log in to a given service with the user account from another service or even invert that process (technically possible, not always advisable). But what is the next step in our evolution towards greater interoperability between our applications, services and systems?Identity and…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today