October 17, 2016 By Larry Loeb 2 min read

Malware creators often borrow ideas from each other. We have historically seen clusters of malware each trying to do something in a functionally similar way. For example, the coding may change, but it’s still an SQL injection attack at the heart of it.

Targeting the Internet of Things

Malicious actors seem to have discovered the Internet of Things (IoT) landscape in a big way. It helped that a distributed denial-of-service (DDoS) malware called Mirai was publicly posted a few weeks ago. Sample code always helps when you have crime on your mind but lack the skills required to commit it.

Mirai is best known for the list of default passwords of IoT-connected devices contained in its source code. These passwords enslave the botnet’s devices, since default passcodes are often not changed during setup. In fact, many of these low-level devices may not even offer the user a chance to change them. Having a nice, clear list of the keys to the kingdom is a useful tool for any apprentice botnet herder.

New Trojan, Old Tricks

Softpedia reported that a new Linux Trojan is trying the same IoT tricks as Mirai. The threat, called NyaDrop, launches a brute-force attack against telnet ports. Once in, this small malware checks out the infected system, opens a backdoor and downloads the Nya Trojan. It only happens if the IoT device is running the MIPS 32-bit architecture on the CPU, which is present in many low-level devices.

NyaDrop is all about getting the “nya” UNIX-specific ELF binary to the right place. This dropper scheme could allow the payload on the compromised devices to be updated at a later date.

Securing the IoT Landscape

Akamai has been scurrying around lately looking at the recent IoT-enabled DDoS attacks. The content delivery network and cloud provider observed some new techniques to hide IP addresses that depend on IoT devices for the grunt work, and issued a threat advisory to address this issue.

The so-called SSHowDowN Proxy attack exploits a vulnerability in OpenSSH that has been around for 12 years. If the IoT device supports remote secure shell (SSH) connections, malware actors can leverage default passwords to get in and fiddle with the device’s SSH options. They can then make an SSH tunnel through the device by using TCP forwarding so that anything sent to it remotely ends up looking as if it had originated from that device.

SecurityWeek listed some mitigation techniques for this, including advice for vendors to shut down all active SSH as a default setting on IoT devices.

Future implementation methods will determine the security of the IoT landscape going forward. But an exploitable mass of IoT devices is already out there for cybercriminals to hijack for their own nefarious purposes.

More from

Passwords, passkeys and familiarity bias

5 min read - As passkey (passwordless authentication) adoption proceeds, misconceptions abound. There appears to be a widespread impression that passkeys may be more convenient and less secure than passwords. The reality is that they are both more secure and more convenient — possibly a first in cybersecurity.Most of us could be forgiven for not realizing passwordless authentication is more secure than passwords. Thinking back to the first couple of use cases I was exposed to — a phone operating system (OS) and a…

DOD establishes Office of the Assistant Secretary of Defense for Cyber Policy

2 min read - The federal government recently took a new step toward prioritizing cybersecurity and demonstrating its commitment to reducing risk. On March 20, 2024, the Pentagon formally established the new Office of the Assistant Secretary of Defense for Cyber Policy to supervise cyber policy for the Department of Defense. The next day, President Joe Biden announced Michael Sulmeyer as his nominee for the role.“In standing up this office, the Department is giving cyber the focus and attention that Congress intended,” said Acting…

Unpacking the NIST cybersecurity framework 2.0

4 min read - The NIST cybersecurity framework (CSF) helps organizations improve risk management using common language that focuses on business drivers to enhance cybersecurity.NIST CSF 1.0 was released in February 2014, and version 1.1 in April 2018. In February 2024, NIST released its newest CSF iteration: 2.0. The journey to CSF 2.0 began with a request for information (RFI) in February 2022. Over the next two years, NIST engaged the cybersecurity community through analysis, workshops, comments and draft revision to refine existing standards…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today