July 14, 2016 By Larry Loeb 2 min read

Riffle is a response from the Massachusetts Institute of Technology to the problems the Tor browser has been having as of late. Unlike other alternatives, MIT has a grander vision that involves doing more than just increasing the randomization of current Tor operations in memory.

MIT’s response takes the form of changing the architecture of the underlying message shuffle that goes on inside Tor, all while keeping the onion architecture that Tor pioneered.

There will be a full presentation of the new program at the Privacy Enhancing Technologies Symposium in July, which will include the researchers at MIT’s Computer Science and Artificial Intelligence Laboratory and the École Polytechnique Fédérale de Lausanne.

Learning How to Riffle

The MIT researchers proposed making a mixnet inside of Tor that randomizes packet order. It shuffles — or riffles — them at random intervals so that they no longer follow an upward and incremental order.

As the researchers explained, “Each server permutes the order in which it receives messages before passing them on to the next. If, for instance, messages from senders Alice, Bob and Carol reach the first server in the order A, B, C, that server would send them to the second server in a different order — say, C, B, A. The second server would permute them before sending them to the third and so on.”

Any cybercriminal attempting to track these messages wouldn’t have insight into the original order or origin.

This sort of change makes it harder to associate individual packets with messages. It also makes it harder to follow moving packets and build a message from them. If that’s your threat model, it’s an improvement. But it’s not the only threat model to be considered where Tor is concerned.

Don’t Forget Sybil

There is a known attack against Tor called Sybil, and Riffle addresses it directly. To thwart message tampering, Riffle uses a technique called a verifiable shuffle, which is a method of encryption and authentication for messaging.

MIT stated that each exchange passes a temporary encryption key. Once verified, the rest of the message exchange does not have to use that encryption key. The parties involved are trusted, but verified.

Something the researchers will no doubt be questioned about at the July presentation is their claim that file transfers on Riffle required only one-tenth of the time as other anonymity networks, Softpedia reported. But if Riffle is as effective as it claims, and other Tor advancements continue to take hold, anonymous browsing may become more popular than ever.

More from

Apple Intelligence raises stakes in privacy and security

3 min read - Apple’s latest innovation, Apple Intelligence, is redefining what’s possible in consumer technology. Integrated into iOS 18.1, iPadOS 18.1 and macOS Sequoia 15.1, this milestone puts advanced artificial intelligence (AI) tools directly in the hands of millions. Beyond being a breakthrough for personal convenience, it represents an enormous economic opportunity. But the bold step into accessible AI comes with critical questions about security, privacy and the risks of real-time decision-making in users’ most private digital spaces.AI in every pocketHaving sophisticated AI…

Government cybersecurity in 2025: Former Principal Deputy National Cyber Director weighs in

4 min read - As 2024 comes to an end, it’s time to look ahead to the state of public cybersecurity in 2025.The good news is this: Cybersecurity will be an ongoing concern for the government regardless of the party in power, as many current cybersecurity initiatives are bipartisan. But what will government cybersecurity look like in 2025?Will the country be better off than they are today? What are the positive signs that could signal a good year for national cybersecurity? And what threats should…

FYSA – Adobe Cold Fusion Path Traversal Vulnerability

2 min read - Summary Adobe has released a security bulletin (APSB24-107) addressing an arbitrary file system read vulnerability in ColdFusion, a web application server. The vulnerability, identified as CVE-2024-53961, can be exploited to read arbitrary files on the system, potentially leading to unauthorized access and data exposure. Threat Topography Threat Type: Arbitrary File System Read Industries Impacted: Technology, Software, and Web Development Geolocation: Global Environment Impact: Web servers running ColdFusion 2021 and 2023 are vulnerable Overview X-Force Incident Command is monitoring the disclosure…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today