December 3, 2015 By Douglas Bonderud 2 min read

Sharing is a positive force. Parents teach it to children, managers teach it to staff and new technology initiatives depend on it; public cloud computing wouldn’t be possible without the ability to share and redistribute resources on demand. But as reported by Threatpost, sometimes sharing can also do more harm than good: Researchers have now discovered that thousands of embedded devices — routers, gateways and modems, to name a few — share cryptographic keys, opening up a new avenue for man-in-the-middle (MitM) attacks.

Share and Share Alike?

In a study of more than 4,000 devices from 70 manufacturers, researchers from SEC Consult discovered startling consistency: Almost 600 unique private keys were shared and reused across devices. Of the 580 shared, 230 were actively in use, accounting for 9 percent of HTTPS hosts (150 certificates shared among 3.2 million hosts) and 6 percent of secure shell (SSH) hosts. In total, over 900 products from 50 vendors were identified as vulnerable.

What’s more, while devices made by the same company were shown to reuse private keys, those same keys were also found in devices made by competitors — meaning keys were either deliberately shared, leaked or simply repurposed by OEMs working with different vendors. Since these keys are hard-coded into firmware, it’s not simply a matter of resetting the device and trying again; this state of affairs is effectively permanent.

So what’s the problem here? According to InfoWorld, if attackers can steal private keys and then intercept a connection attempt, they can co-opt the user’s public key and force embedded devices to talk with their machines instead. And since SSH sign-ons typically occur only during the first-ever login attempt, cybercriminals could set themselves up as the go-to connection. By capturing encrypted HTTPS traffic and then applying the right private key, it’s possible for malicious actors to extract usernames, passwords and other forms of authentication.

Sharing these keys makes the problem much worse — attackers have a much higher chance of successfully repurposing keys from one device to grant access on another. While companies have been quick to release warnings and advisories, there’s no quick fix here, although they rightly point out that it would require direct network access for attackers to launch a MitM attack on these embedded devices. The SEC researchers recommended that vendors change default cryptographic keys before hard-coding their firmware in addition to turning off any remote access features on their network.

Perception and Reality of Embedded Devices

So how did it come to this? How did vendors allow their devices to use and reuse keys without a thought to the potential consequences? A recent CNBC article offered some clarity: When asked, 36 percent of consumers admitted they had shared the password to their online banking account, yet most users gave themselves an A for following cybersecurity best practices.

In other words, there’s a disconnect between perception and reality. Cybersecurity is somehow viewed as a matter of perspective rather than hard-and-fast rules. For vendors and OEMs, the sentiment seems to be that they were only embedded devices and, given the relatively complex nature of carrying out a MitM attack, sharing secure keys wasn’t really a problem — they still deserve an A for cybersecurity, right?

Attackers are now more than willing to go the extra mile if it gives them unfettered access to corporate networks, especially if companies aren’t actively searching for threats in a specific area. Bottom line? Embedded devices aren’t in a class alone when it comes to IT security. Best practices must be shared across all potential access points.

More from

What does resilience in the cyber world look like in 2025 and beyond?

6 min read -  Back in 2021, we ran a series called “A Journey in Organizational Resilience.” These issues of this series remain applicable today and, in many cases, are more important than ever, given the rapid changes of the last few years. But the term "resilience" can be difficult to define, and when we define it, we may limit its scope, missing the big picture.In the age of generative artificial intelligence (gen AI), the prevalence of breach data from infostealers and the near-constant…

Airplane cybersecurity: Past, present, future

4 min read - With most aviation processes now digitized, airlines and the aviation industry as a whole must prioritize cybersecurity. If a cyber criminal launches an attack that affects a system involved in aviation — either an airline’s system or a third-party vendor — the entire process, from safety to passenger comfort, may be impacted.To improve security in the aviation industry, the FAA recently proposed new rules to tighten cybersecurity on airplanes. These rules would “protect the equipment, systems and networks of transport…

Protecting your digital assets from non-human identity attacks

4 min read - Untethered data accessibility and workflow automation are now foundational elements of most digital infrastructures. With the right applications and protocols in place, businesses no longer need to feel restricted by their lack of manpower or technical capabilities — machines are now filling those gaps.The use of non-human identities (NHIs) to power business-critical applications — especially those used in cloud computing environments or when facilitating service-to-service connections — has opened the doors for seamless operational efficiency. Unfortunately, these doors aren’t the…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today