January 5, 2016 By Larry Loeb 2 min read

Researchers from Stockholm University and Linköping University in Sweden have discovered that quantum cryptography may not be as secure as it was presumed to be. They found that energy-time entanglement, which forms the basis for many systems of quantum cryptography, is vulnerable to attack. The research was published in Science Advances.

Quantum Encryption Entanglements

The energy-time entanglement of quantum encryption is based on testing the connection at the same time as the encryption key is created. In practice, two photons are sent out at exactly the same time in two different directions. At both ends of the connection, an interferometer is placed to measure the interference of the detected light.

If the photon stream is being eavesdropped, there should be observational noise present, which can be detected using a theorem from quantum mechanics called Bell’s inequality. If the connection is secure and free from noise, the remaining photons can be used as an encryption key to protect the message.

Now, one interpretation of quantum mechanics (QM) says two quantities cannot be measured at the same time because the measurement process disturbs the system; think Heisenberg uncertainty, but for QM. This interpretation allowed hidden variables to determine the outcome of an experiment.

Bell’s inequalities provide a way to test this interpretation. If there were hidden variables, then the observed distributions would have to have come from a single, hidden joint distribution and would therefore have to obey Bell’s inequalities.

But as the paper published in Science Advances showed, a specially crafted light source can fool the interferometers, making the Bell’s inequality test fail.

How to Hack It

The researchers at Linköping University figured out that if the photon source is replaced with a traditional and pulsed light source that floods the interferometers with light, someone can identify the key or the code string. This means it is also possible to read the message without detection. The security test based on Bell’s inequality will not react even though an attack is underway because the photon detectors in the interferometers are swamped by the bright light.

Mohamed Bourennane and two postgraduate students at the Department of Physics at Stockholm University have, in practical experiments, demonstrated that doing things in this way works as an attack. The attacker blinds the detectors with bright light instead of a stream of photons. At the same time, the attacker uses a local hidden variable model, which gives the distribution of the sign and time slot of outcomes for the receivers, to send out incorrect phase information.

This fools the receivers into thinking the system violates Bell’s inequality even though there is no entanglement and no security. The attacker only needs access to the source device to pull this off. The actor can then fully control the key output and break the security of the interferometer system.

What Now?

The paper suggested solutions to the attack. The researchers listed a number of improved tests and experimental setups that would protect against this. As they put it, “the designer will have to use fast switching and replace the CHSH [Bell] inequality with stronger tests such as modified Pearle-Braunstein-Caves inequalities.”

Quantum computing is still in its infancy. Better practical ways, like those methods suggested by the authors, are needed in order to eliminate the attacks that are possible with the current methods.

More from

How to craft a comprehensive data cleanliness policy

3 min read - Practicing good data hygiene is critical for today’s businesses. With everything from operational efficiency to cybersecurity readiness relying on the integrity of stored data, having confidence in your organization’s data cleanliness policy is essential.But what does this involve, and how can you ensure your data cleanliness policy checks the right boxes? Luckily, there are practical steps you can follow to ensure data accuracy while mitigating the security and compliance risks that come with poor data hygiene.Understanding the 6 dimensions of…

2024 roundup: Top data breach stories and industry trends

3 min read - With 2025 on the horizon, it’s important to reflect on the developments and various setbacks that happened in cybersecurity this past year. While there have been many improvements in security technologies and growing awareness of emerging cybersecurity threats, 2024 was also a hard reminder that the ongoing fight against cyber criminals is far from over.We've summarized this past year's top five data breach stories and industry trends, with key takeaways from each that organizations should note going into the following…

Black Friday chaos: The return of Gozi malware

4 min read - On November 29th, 2024, Black Friday, shoppers flooded online stores to grab the best deals of the year. But while consumers were busy filling their carts, cyber criminals were also seizing the opportunity to exploit the shopping frenzy. Our system detected a significant surge in Gozi malware activity, targeting financial institutions across North America. The Black Friday connection Black Friday creates an ideal environment for cyber criminals to thrive. The combination of skyrocketing transaction volumes, a surge in online activity…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today