Cities are notoriously inefficient. As populations rise, everything from mass transit and road maintenance to power generation and garbage collection becomes more complex and costly. Beyond ballooning budgets, there’s also a push among residents for smarter services driven by Internet of Things (IoT)-enabled infrastructure.

Why drive around aimlessly in search of a parking spot when sensor-enabled apps could simply point users in the right direction? Why leave streetlights on when they’re not needed, or lose water to undiscovered leaks? Empowered, connected and automated smart cities offer a potential solution, but as explained by Information Age, they may come with a considerable caveat: malware.

Implementing Intelligent Infrastructure

Despite the risk of malware, countries can’t ignore the benefits of smart cities. As noted by ZDNet, China has plans to equip 50 urban areas with user-driven technologies to make life easier for residents and reduce total infrastructure complexity. One city on the forefront of smart technology, Shanghai, recently launched a “demand response” energy management tool, which notifies commercial energy consumers when demand peaks and rewards them for temporarily reducing consumption.

Similarly, in London, increased ridership on city transit prompted the development of Oyster Cards — radio-frequency identification (RFID)-enabled smart tickets. They eliminate the need to manually scan or check tickets at transit hubs. As a result, passenger journeys have increased by more than 40 percent.

Movable Malware

Unfortunately, the biggest strength of smart cities — interconnectivity — is also the greatest weakness.

In September 2016, according to CyberScoop, cybercriminals managed to compromise almost one-quarter of the networks used by the San Francisco Municipal Transportation Agency (SFMTA) and infect them with ransomware. While there’s no indication the SFMTA paid the requested bitcoin ransom, the breach forced the agency to keep entry gates open free of charge, resulting in a significant financial loss.

But it could have been worse: What if malicious actors took control of train operation systems or track signaling controls? Even more worrisome, Infosecurity Magazine reported that 40 percent of industrial control systems (ICS), which control critical physical infrastructure such as power and water operations, were hit by malware attacks in the last half of 2016.

The Information Age piece, meanwhile, presented an even larger threat model of smart vehicles operating in smart cities that carry malware infections to other urban networks. It’s a good argument based on the existing phenomenon of accidental seed spreading: Moving vehicles create a wind-tunnel effect that picks up small seeds and deposits them in a new location, in turn changing the local ecosystem.

The same is possible with malware. Let’s say, for example, that a network-enabled vehicle connects to the city transportation smart grid and is infected with malware. Unaware, the driver takes the vehicle to a new city, connects to its infrastructure and inadvertently spreads the malicious code. At best, cybercriminals gain access to low-level systems and impact total network performance. At worst, they take control of citywide services and demand huge payoffs to vacate the virtual premises.

Solving the Smart Cities Conundrum

Smart cities are inevitable, given potential gains to both citizen satisfaction and administrative efficiency. But these gains offset neither the potential security issues nor the risk of connected devices and vehicles as unwitting malware carriers.

While it’s impossible to design impenetrable infrastructure, the combination of basic security hygiene with cloud-based detection and remediation tools makes it possible for cities to get advance warning of malware threats, respond appropriately and minimize disruption to critical services.

More from

Data Privacy: How the Growing Field of Regulations Impacts Businesses

The proposed rules over artificial intelligence (AI) in the European Union (EU) are a harbinger of things to come. Data privacy laws are becoming more complex and growing in number and relevance. So, businesses that seek to become — and stay — compliant must find a solution that can do more than just respond to current challenges. Take a look at upcoming trends when it comes to data privacy regulations and how to follow them. Today's AI Solutions On April…

Why Zero Trust Works When Everything Else Doesn’t

The zero trust security model is proving to be one of the most effective cybersecurity approaches ever conceived. Zero trust — also called zero trust architecture (ZTA), zero trust network architecture (ZTNA) and perimeter-less security — takes a "default deny" security posture. All people and devices must prove explicit permission to use each network resource each time they use that resource. Using microsegmentation and least privileged access principles, zero trust not only prevents breaches but also stymies lateral movement should a breach…

5 Golden Rules of Threat Hunting

When a breach is uncovered, the operational cadence includes threat detection, quarantine and termination. While all stages can occur within the first hour of discovery, in some cases, that's already too late.Security operations center (SOC) teams monitor and hunt new threats continuously. To ward off the most advanced threats, security teams proactively hunt for ones that evade the dashboards of their security solutions.However, advanced threat actors have learned to blend in with their target's environment, remaining unnoticed for prolonged periods. Based…

Third-Party App Stores Could Be a Red Flag for iOS Security

Even Apple can’t escape change forever. The famously restrictive company will allow third-party app stores for iOS devices, along with allowing users to “sideload” software directly. Spurring the move is the European Union’s (EU) Digital Markets Act (DMA), which looks to ensure open markets by reducing the ability of digital “gatekeepers” to restrict content on devices. While this is good news for app creators and end-users, there is a potential red flag: security. Here’s what the compliance-driven change means for…