June 4, 2018 By David Bisson 2 min read

Face identification is most accurate when human analysts and machines work together, a recent multidisciplinary study uncovered.

According to a report published in the Proceedings of the National Academy of Sciences, three scientists at the National Institute of Standards and Technology (NIST) found that facial identification performance is optimal when humans and machines collaborate.

Specifically, the researchers observed the best results after pairing a single professional facial examiner with a top-performing algorithm. This analytical setup was more accurate than arrangements involving multiple examiners or algorithms.

Face Identification Most Effective When Humans and Machines Collaborate

For the study, NIST analyzed the face identification performance of 184 participants, 87 of which were professional face examiners who analyze faces for legal purposes. There were also 13 “super recognizers” who are naturally gifted at comparing faces.

The control group of 84 participants involved 53 fingerprint examiners and 31 undergraduate students, none of whom had received training in facial examinations.

NIST asked each participant to compare 20 face image pairs that were deemed extremely challenging based on their characteristics. The scientists then conducted the same analyses using four machine learning facial recognition technology algorithms developed between 2015 and 2017.

Professional face examiners were more accurate than individuals in the untrained group. The NIST researchers asserted that these results should help scientifically substantiate experts’ testimony in court.

The algorithms also performed well, but their accuracy was even better when combined with the insights of an expert examiner. This human-machine collaboration even beat out groups of professional face examiners.

Results Reveal a Need for Further Research

“This is the first study to measure face identification accuracy for professional forensic facial examiners, working under circumstances that apply in real-world casework,” said NIST electronic engineer P. Jonathon Phillips. “Our deeper goal was to find better ways to increase the accuracy of forensic facial comparisons.”

The NIST researchers noted that current real-world forensic frameworks don’t encourage the combination of human examiners and artificial intelligence (AI). They asserted that the study’s findings can serve as a road map for improving face identification in the future and raised questions about what distinguishes human approaches from AI-based methods.

More from

Airplane cybersecurity: Past, present, future

4 min read - With most aviation processes now digitized, airlines and the aviation industry as a whole must prioritize cybersecurity. If a cyber criminal launches an attack that affects a system involved in aviation — either an airline’s system or a third-party vendor — the entire process, from safety to passenger comfort, may be impacted.To improve security in the aviation industry, the FAA recently proposed new rules to tighten cybersecurity on airplanes. These rules would “protect the equipment, systems and networks of transport…

Protecting your digital assets from non-human identity attacks

4 min read - Untethered data accessibility and workflow automation are now foundational elements of most digital infrastructures. With the right applications and protocols in place, businesses no longer need to feel restricted by their lack of manpower or technical capabilities — machines are now filling those gaps.The use of non-human identities (NHIs) to power business-critical applications — especially those used in cloud computing environments or when facilitating service-to-service connections — has opened the doors for seamless operational efficiency. Unfortunately, these doors aren’t the…

Communication platforms play a major role in data breach risks

4 min read - Every online activity or task brings at least some level of cybersecurity risk, but some have more risk than others. Kiteworks Sensitive Content Communications Report found that this is especially true when it comes to using communication tools.When it comes to cybersecurity, communicating means more than just talking to another person; it includes any activity where you are transferring data from one point online to another. Companies use a wide range of different types of tools to communicate, including email,…

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought leadership and research.
Subscribe today