In the four years since Amazon introduced the Echo, the popularity of speech recognition systems has exploded. One reason is that the quality of voice recognition technology has now reached parity with humans. An estimated 27 million Echo and Google Home devices have been sold, according to Computer Intelligence Research Partners (CIRP), and the Consumer Technology Association expected another 4.4 million were sold during this past holiday season.

This surge has made speech recognition a tempting new target for cybercriminals. Thanks to encryption and tunneling, voice-activated devices are believed to be reasonably secure against compromise at the software level, but what about the commands they accept? Recent research has shown that voice recognition itself can be compromised with unsettling ease.

Subverting the Human Ear

Last summer, a group of researchers at Zhejiang University published a paper describing how popular speech recognition systems, such as Apple’s Siri and Google Now, can be activated using high frequencies that are inaudible to humans but can be picked up by electronic microphones. This technique, which the researchers dubbed DolphinAttack, works even if the microphones are wired to ignore high-frequency audio because the harmonic effect produces the same sound at other frequencies.

By boosting the power of those harmonics, researchers were able to command voice-activated assistants to do things such as visit a malicious website, initiate phone calls, send fake text messages and disable wireless communications. Their brief but unsettling demonstration video shows how this is possible.

Hijacking Speech Recognition With Hidden Commands

More recently, two researchers at the University of California, Berkeley published a report that detailed how they were able to embed commands into any kind of audio that’s recognized by Mozilla’s DeepSpeech voice-to-text translation software. The authors claimed that they were able to duplicate any type of audio waveform with 99.9 percent accuracy and transcribe it as any phrase they chose at a rate of 50 characters per second with a 100 percent success rate.

The Berkeley researchers posted samples of these “audio adversarial” clips to demonstrate how they embedded the hidden phrase, “OK Google, browse to” in the spoken passage “Without the dataset the article is useless.” It’s nearly impossible to tell the difference.

They did it with music too. The samples include a four-second clip from Verdi’s “Requiem” that masks the same command. The only difference between the two clips is a series of subtle chirps that the passive listener probably wouldn’t even notice.

The technique works because of the complex way machine learning algorithms translate speech to text, which is considerably more difficult than interpreting handwriting or images. Because of the many different ways people pronounce the same sounds, speech recognition algorithms use connectionist temporal classification (CTC) to make an educated guess about how each sound translates to a letter. Researchers were able to create an audio waveform that the machine recognized by making slight changes to the input that are nearly undetectable to the human ear. In essence, they were able to cancel out the sound the machine was supposed to hear in favor of the audio they wanted it to hear.

Don’t Panic, But Use Caution

This doesn’t mean you should go home and unplug your Alexa. Both proofs of concept have significant limitations. In the case of DolphinAttack, the audio source had to be within six feet of the target device. It’s also reasonably easy for device owners to defend against hijacks by changing their wake phrases or restricting access to critical apps.

The Berkeley researchers only tested their technique on DeepSpeech, which isn’t used by any of the major voice recognition products. They had detailed knowledge of how DeepSpeech works and the benefit of a highly controlled laboratory environment. There was also quite a bit of computational power involved in refining the audio to embed the hidden commands.

Nevertheless, these academic experiments highlighted the way malicious actors can make these techniques work in the wild. The Berkeley researchers admitted as much, noting in their report that “further work will be able to produce audio adversarial examples that are effective over the air.”

These discoveries are unsettling because voice recognition is on its way to becoming ubiquitous, not just on smartphones, but also in appliances, control devices, sensors and other Internet of Things (IoT) devices. You can imagine the chaos that an attacker could cause by broadcasting hidden commands over a public address system or hijacked TV signal, or even from a boombox in a crowded subway car.

South Park” and Burger King have already provided real-world examples of how this technique could disrupt both consumers and businesses. Their stunts were in good fun, but you can bet that cybercriminals are already thinking of ways to apply them to their own malicious schemes.

Listen to the podcast: The 5 Indisputable Facts About IoT Security

More from Artificial Intelligence

Data Privacy: How the Growing Field of Regulations Impacts Businesses

The proposed rules over artificial intelligence (AI) in the European Union (EU) are a harbinger of things to come. Data privacy laws are becoming more complex and growing in number and relevance. So, businesses that seek to become — and stay — compliant must find a solution that can do more than just respond to current challenges. Take a look at upcoming trends when it comes to data privacy regulations and how to follow them. Today's AI Solutions On April…

Tackling Today’s Attacks and Preparing for Tomorrow’s Threats: A Leader in 2022 Gartner® Magic Quadrant™ for SIEM

Get the latest on IBM Security QRadar SIEM, recognized as a Leader in the 2022 Gartner Magic Quadrant. As I talk to security leaders across the globe, four main themes teams constantly struggle to keep up with are: The ever-evolving and increasing threat landscape Access to and retaining skilled security analysts Learning and managing increasingly complex IT environments and subsequent security tooling The ability to act on the insights from their security tools including security information and event management software…

4 Ways AI Capabilities Transform Security

Many industries have had to tighten belts in the "new normal". In cybersecurity, artificial intelligence (AI) can help.   Every day of the new normal we learn how the pandemic sped up digital transformation, as reflected in the new opportunities and new risks. For many, organizational complexity and legacy infrastructure and support processes are the leading barriers to the effectiveness of their security.   Adding to the dynamics, short-handed teams are overwhelmed with too much data from disparate sources and…

What’s New in the 2022 Cost of a Data Breach Report

The average cost of a data breach reached an all-time high of $4.35 million this year, according to newly published 2022 Cost of a Data Breach Report, an increase of 2.6% from a year ago and 12.7% since 2020. New research in this year’s report also reveals for the first time that 83% of organizations in the study have experienced more than one data breach and just 17% said this was their first data breach. And at a time when…