Information security, data science and cloud computing skills are the most sought-after talents in the marketplace today. Security operations center (SOC) resources — typically analysts and threat hunters — are increasingly needed to combat the growing threat of adversaries launching aggressive campaigns with the latest techniques and technologies.

The World of the Security Data Scientist

While there are several products to identify, detect and contain known threats and any indicator of compromise (IOC), there is very little protection against unknown threats, zero-day exploits and newly identified vulnerabilities. With the explosion of enriched security log data from thousands of servers, devices, databases and applications, managing this highly complex puddle of structured and unstructured data is a humongous task.

Enter the security data scientist.

What Is a Security Data Scientist?

Security data scientists are practitioners with a solid domain knowledge on network security, identity and access management (IAM) and vulnerability management. However, their core expertise lies in the deep conceptual understanding of advanced mathematics and statistical concepts. These include linear algebra, differential equations, probability distributions, quantitative methods and inferential statistics.

Security data scientists have the skills to understand complex algorithms and build advanced models, applying these concepts to real security data sets in single or clustered environments. They are experts in computer programming languages like Python, R, Scala or MATLAB.

They are also deft at using big data technologies, such as Hadoop Distributed File System (HDFS), Elasticsearch, MapReduce and Apache Spark, to architect enterprise-level security data lake solutions. They also have the business knowledge to present complex data visualizations describing data relationships, such as key performance indicators (KPIs), metrics and scorecards, to senior business executives.

Analytics Services

Security organizations need data scientists to organize, aggregate, enrich and transform huge volume of security data sets into meaningful schema and models. They need to understand underlying data relationships using descriptive analytics, such as correlation heat maps, cause and effect diagrams, time series and frequency charts. Once the data is transformed, cleaned and persisted in a structured format, the data scientist can train the machine to learn from labeled historical data sets and predict outcomes using supervised machine learning. They can also detect patterns and classes in unlabeled data using unsupervised techniques, such as clustering, dimensionality reduction and anomaly detection.

False positive classification, pattern analytics, model scoring, topic modeling and rule analytics are other use cases where machine learning and predictive analytics can provide huge benefits to companies. Such projects can help simplify workflow, automate repetitive manual functions and discover new insights and data patterns.

A few organizations today are also employing junior data scientists and data analysts for building security dashboards and simulation models for analyzing, monitoring and reporting using business intelligence tools. As security organizations integrate with mainstream business, security data science will evolve — providing analytics services to other groups, such as fraud analytics, risk analytics, behavior analytics and disaster recovery.

Security analysts today are heads-down on real-time streaming events, IOCs and intelligence feeds. They have little bandwidth to research unknown threats or identify historical data anomalies.

A security data scientist has the skills and training to perform these advanced analytics tasks on data at rest and in motion — supporting analysts and providing deep insights to the chief information security officer (CISO) and the business. If you have taken the time to bake the cake, make sure to add the icing.

More from Intelligence & Analytics

2022 Industry Threat Recap: Manufacturing

It seems like yesterday that industries were fumbling to understand the threats posed by post-pandemic economic and technological changes. While every disruption provides opportunities for positive change, it's hard to ignore the impact that global supply chains, rising labor costs, digital currency and environmental regulations have had on commerce worldwide. Many sectors are starting to see the light at the end of the tunnel. But 2022 has shown us that manufacturing still faces some dark clouds ahead when combatting persistent…

Cybersecurity in the Next-Generation Space Age, Pt. 3: Securing the New Space

View Part 1, Introduction to New Space, and Part 2, Cybersecurity Threats in New Space, in this series. As we see in the previous article of this series discussing the cybersecurity threats in the New Space, space technology is advancing at an unprecedented rate — with new technologies being launched into orbit at an increasingly rapid pace. The need to ensure the security and safety of these technologies has never been more pressing. So, let’s discover a range of measures…

Backdoor Deployment and Ransomware: Top Threats Identified in X-Force Threat Intelligence Index 2023

Deployment of backdoors was the number one action on objective taken by threat actors last year, according to the 2023 IBM Security X-Force Threat Intelligence Index — a comprehensive analysis of our research data collected throughout the year. Backdoor access is now among the hottest commodities on the dark web and can sell for thousands of dollars, compared to credit card data — which can go for as low as $10. On the dark web — a veritable eBay for…

The 13 Costliest Cyberattacks of 2022: Looking Back

2022 has shaped up to be a pricey year for victims of cyberattacks. Cyberattacks continue to target critical infrastructures such as health systems, small government agencies and educational institutions. Ransomware remains a popular attack method for large and small targets alike. While organizations may choose not to disclose the costs associated with a cyberattack, the loss of consumer trust will always be a risk after any significant attack. Let’s look at the 13 costliest cyberattacks of the past year and…